
Smart Data Collection and Processing on Arduino
Calculating Fast Fourier Transforms using a Microprocessor
Project Sponser: Dr. Anna Gilbert, Department of Mathematics
Student Researchers: Justin Shetty and James Wich

Abstract
 Over the course of seven months, a study was undertaken to deter-
mine if it was possible to take a low memory cost Fast Fourier Trans-
form program and run it on platform which does not have a lot of
memory in total, such as an Arduino. This study stems from the fact that
many Fast Fourier Transform programs require a lot of memory to run
affectively. Under the direction of Dr. Anna Gilbert, a professor at the
University of Michigan, we conducted such a study using a Fast Fourier
Transform program which she designed. This program uses less
memory and is faster than normal FFT programs because it takes fewer
samples while still maintaining the accuracy of the results. The results
of the study will help to prove that it is possible to create a Fast Fourier
Transform program which uses less than 125 kilobytes of memory
while still maintaining accuracy, and that Dr. Gilbert’s Fast Fourier
Transform program is a viable substitute for normal FFT programs.

Purpose and Goals
 The main goal of this project is to run the Fast Fourier Transform
program created by Dr. Anna Gilbert on a low memory processor (Ardu-
ino), while still maintaining the original accuracy of the program which
is equal to that of other Fast Fourier Transform programs running on
computers with a lot of memory. In order to test this, we will �irst con-
vert Dr. Gilbert’s original code from MATLAB style code into C++, put
the code onto an Arduino, test the code using real world data obtained
from sensors, and then compare the results to the original MATLAB
code as well as a more memory intensive FFT program. This would then
prove that Dr. Gilbert’s FFT program is not only able to run optimally on
a low memory processor such as an Arduino, something that other FFT
programs would never be able to do, but also that the program is theo-
retically faster and more ef�icient than the standard FFT program.

MATLAB stands for MATrix
LABoratory and the software is

designed around vectors and
matrices. This makes the software
useful for linear algebra, while also

a great tool for solving algebraic
and differential equations

and for numerical
integration.

MATLAB

A device which, when hooked up
to a speaker or other device
designed to oscillate at some

frequency, will cause the device
hooked up to it to oscillate in a
sinusoidal manner (like a sine

wave).

Sine Wave Generator

Arduino/Genuino Uno is a
microcontroller board based on the

ATmega328P (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz quartz crystal, a
USB connection, a power jack, an ICSP header and a

reset button. (Essentially it is a programmable,
open-source computing platform which can be used for

a number of things.) The company Arduino is an
open-source computer hardware and software

company which designs and manufactures
microcontroller-based kits for building digital

devices and interactive objects that can
sense and control objects in the

physical world.

Arduino/Arduino Uno

Is an object oriented
programming (OOP) language,

developed by Bjarne Stroustrup, and
is an extension of C language. This
type of coding language does not,
unfortunately, implement arrays

and matrixes like the software
MATLAB.

C++

The Mega 2560 is a microcon-
troller board based on the ATme-

ga2560. It has 54 digital input/output
pins (of which 15 can be used as PWM

outputs), 16 analog inputs, 4 UARTs
(hardware serial ports), a 16 MHz

crystal oscillator, a USB connection,
a power jack, an ICSP header,

and a reset button.

Arduino Mega

Methods
 For our research experiment we were supplied the necessary
materials by Dr. Anna Gilbert. We used an open-source micro-con-
troller and processing board made by the company Arduino, specif-
ically we used the Arduino UnoTM and Arduino MegaTM in order
to see which board would be able to run the code better. We also
were provided all the necessary sensors and connecting wire
needed to be able to power the Arduino and take sample data from
real world sampling sources. These sensors included but are not
limited to: breadboards, connective wire, Arduino power cable,
pressure sensor, and miscellaneous buttons.

Experimental Supplies:

 In order to prove that Dr. Gilbert’s FFT code is able to run on a low memory
processor such as the Arduino, we �irst needed to be able to put the MATLAB code
onto the Arduino, which uses the C++ coding language. In order to do this, we �irst
had to translate Dr. Gilbert’s base FFT code into C++ code from MATLAB code, but
one of the main differences between MATLAB and C++ style coding is that
MATLAB code is designed to work with matrices, and C++ is not naturally able to
do this. In order to �ix this problem, we were required to add a few code libraries
and user created functions onto the Arduino which allowed it to essentially work
with data structures which mirrored that of MATLAB matrices. We were also re-
quired to come up with functions which allowed the Arduino to handle complex
numbers as the C++ coding language is not, in its base state, able to work with
imaginary/complex numbers such as √(-1). After this was done, and even a little
before this was done, an idea was created which shifted the endpoint of our re-
search quite a bit. This idea was conceived out of the fact that Arduinos are able to
take data samples from the surrounding environment provided they have the nec-
essary sensors to do so. Thus, we came up with the idea of making the Arduino use
a electret microphone ampli�ier to take data samples from a speaker connected to
a sin-wave-generator instead of feeding it data using code. This turned out to be an
even better idea once we found out that the code required to make the Arduino
take data samples from the environment used a lot less memory than the code re-
quired to arti�icially create the wave data to run the FFT on. It turned out that the
only thing we had to do to get this idea off the ground was to buy and install the
necessary electret microphone ampli�ier, put some code in to read the amplitude
data from the sensor, and another function to randomly generate times to sample
data from the pressure sensor (this is a critical component of Dr. Gilbert’s FFT
code). The sampling code was also designed to calibrate the sensor to the incom-
ing signal int order to minimize the error in of the sampling. The code put onto the
Arduino would then be tested in Randall Physics Laboratory at the University of
Michigan using a sine-wave generator, an oscilloscope, and a speaker to generate
waves to sample data from with the Arduino.

Code Translation, Board Con�iguration, and Testing:

Initial Results and Data:

Analyzed Data and Implications:

 We were successfully able to implement Dr. Gilbert’s Fast Fourier Transform
code onto an Arduino. The translated �inal code was all able to �it onto an Arduino
UNO, which has 256 kilobytes of storage, and only used up approximately 90% of
the maximum data on the microprocessor.
 Unfortunately, we ran into some trouble debugging our code when we were
trying to make sure that our translated FFT program worked correctly and we
were unable to test the Arduino as we intended to in time to get the results in. If
we are able to work out all the bugs and if all goes well with the tests, then the data
returned by the Arduino should tell us that the frequency of the sound wave creat-
ed is the same as the frequency we dialed in and shown on the oscilloscope. To
prove the accuracy and consistency of the returned data, we ran numerous trials
with different frequencies for the sound wave. Below is the outputted data from
the Arduino in graph from a few of our trials, as well as the setup which was used
during the experiment.

 Even though were unable to test the accuracy of the code on the Arduino
through real world tests, we were able to prove that Dr. Gilbert’s Fast Fourier
Transform code is capable of being put onto a low memory processor. In addition
to this, our unof�icial initial tests of the program so far have shown us that this pro-
gram should still maintain the same accuracy in its answers as other FFT functions
at relatively low frequencies. We are therefore con�ident that Dr. Gilbert’s
code/way for calculating the FFT of a function is a viable substitute for the cur-
rently used way of calculating the FFT because it takes up less space and is project-
ed to run quicker and maintain a relatively low margin of error even when run on
a low memory processor (i.e. an Arduino UNO). This is as expected as Dr. Gilbert
�irst proved that this code was as accurate as the normal MATLAB FFT function
and found that it was also faster, to an extent. [1]Special thanks to Dr. Gilbert for being an amazing mentor and being very helpful,

supportive, teaching, and patient during the entirety of the project.

J. Zou, A. Gilbert, M. Strauss, and I. Daubechies, Theoretical and Experimental
 Analysis of a Randomized Algorithm for Sparse Fourier Transform Analy
 sis, Journal of Computational Physics, vol. 211, No. 2, 2006, pp. 572--595.

"Arduino - ArduinoBoardUno." Arduino - ArduinoBoardUno. Arduino, n.d. Web.
 26 Mar. 2017.

"Arduino - ArduinoBoardMega." Arduino - ArduinoBoardMega. Arduino, n.d.
 Web. 23 Mar. 2017.

References

