
Smart Data Collection and Processing on Arduino
Justin A. Shetty1, Anna C. Gilbert1,2

1. University of Michigan, Ann Arbor 2. Herman H. Goldstine Collegiate Professor, Department of Mathematics

Introduction
The Cooley-Tukey Fast Fourier Transform (FFT) algorithm
provides users with a means of characterizing signals. However,
on low-resource platforms, even the highly-efficient FFT, which is
𝑂 𝑛 𝑙𝑜𝑔𝑛 , still proves to be a computational and memory
bottleneck. This obstacle is especially pertinent to Arduino
microcontrollers, where computational power and RAM are
exceptionally limited. In response to the need for more efficient
means of signal characterization, Iwer, Gilbert, and Strauss
developed the AAFFT [1], an algorithm that has been shown to
be sublinearly-efficient in characterizing time-sparse signal
samples and faster than the FFTW 3.1 for sample sets larger than
106 [1]. However, this implementation is limited to its MATLAB
environment, which necessitates full x86 architecture system. To
facilitate usage of such an algorithm in possible Internet of
Things applications, this research pursues the implementation of
the AAFFT algorithm in C++ for use on Atmel microcontroller
based devices, e.g. Arduinos. RAM capacity differences are
evident in Figure 1.

Abstract
Currently there is a lack of fast, accurate, memory-efficient data
collection and storage methods on the Arduino platform. The
goal of this research is to implement an existing sublinearly-
efficient MATLAB data sampling algorithm developed by Gilbert,
Strauss, and Tropp on the Arduino platform. Preliminary work
involved developing an understanding of the existing MATLAB
algorithm while subsequent efforts involved the implementation
of the systems’ components on the Arduino. Testing included
comparing the detected frequency-coefficient pairs produced by
the Arduino implementation with those of the MATLAB
implementation. Results revealed the extent to which this
sublinear data collection/storage algorithm retains its
effectiveness on the Arduino. Further work can include
implementation of the algorithm in other languages.

8GB
8KB

Figure 1: RAM capacity of a typical x86
system versus that of an Arduino Mega

Methods
A divide-and-conquer, bottom-up approach was taken to handle
the “translation” of the system. As opposed to the MATLAB
implementation, the Arduino system was structured as a
traditional library with all functions in a single file for ease of use.
The “lowest level” parts of the algorithm, i.e. functions that do
not rely on many or any other functions from the system, were
written first so that rudimentary unit testing could be done to
ensure some level of basic functionality. Then, the “higher level”
functions, those which utilize other AAFFT-specific functions,
could be implemented.

During development, concern arose as to whether the Arduino’s
built-in random number generator was random enough for a
proper implementation of the AAFFT, which relies on randomly
selected sampling points in time. To ensure proper functionality,
the “randomness” of the Arduino’s random number generation
was found to be satisfactory based on the data visible in Figure 2.

Conclusions
Implementation of the AAFFT on the Arduino brings the
computational and memory efficiency of the MATLAB
counterpart to the world of small-scale computing and
internet integration. Now with a way to efficiently collect,
store, and in turn transmit data, low bandwidth internet
connections and devices with little computational and
storage resources can be used in applications involving heavy
data collection.

Future work could involve development of a Python
implementation for use on devices like the Raspberry Pi that
are neither based on the Arduino nor are capable of running
heavy software like MATLAB. A Python implementation
would also be useful for users without access to a MATLAB
license.

[1] A. Gilbert, M. Iwen, and M. Strauss, "Empirical evaluation of a sub-linear time sparse DFT
algorithm", Communications in Mathematical Sciences, vol. 5, no. 4, pp. 981-998, 2007.

Results
Despite the Arduino Mega’s substantially lower RAM capacity,
which limited the types of data structures that could be used,
the Arduino implementation of the AAFFT can now
successfully identify the frequencies and coefficients of
software-generated signals. Unfortunately, the RAM
limitation does limit number of “passes” that can be taken on
the signal, meaning the more tones there are in a signal, the
less likely the algorithm is to accurately or precisely detect
the tones and their corresponding coefficients.

The complete and latest Arduino implementation can be
found on GitHub at the following address:

https://github.com/justinshetty/AAFFT-Arduino

Figure 2: Distribution of pseudorandom integer samples. Top: 150
samples, Bottom: 1500 samples

Figure 3: Illustration of a
complex signal
represented in time as a
sum of single-tone sine
waves

Graphic Source: http://www.bbc.co.uk/blogs/researchanddevelopment/2010/11/mozilla-audio-data-api.shtml

